SWITCHON CASE COMPETITION 2022

By: ACF legends from Colombia

Mentor: Sebastian Cardona

Carlos Castaño Mechanical Engineer Cacastanor@eafit.edu.co

Ana María Muñoz Mechanical Engineering Student ammunozt@eafit.edu.co

Universidad EAFIT, Medellin, Colombia

Felipe Gil Mechanical Engineering Student fgilm@eafit.edu.co

TABLE OF CONTENTS

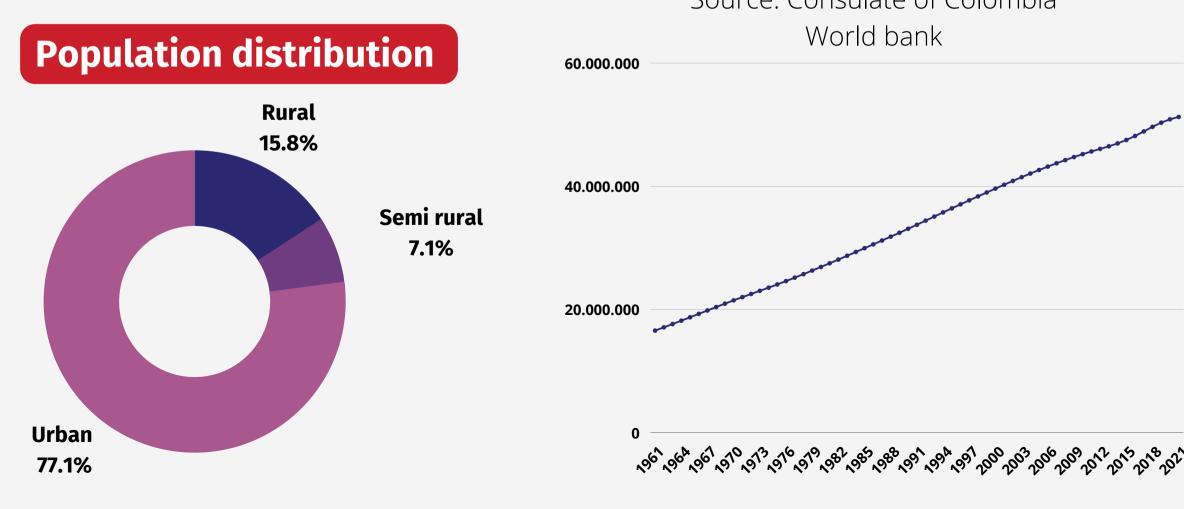
INTRODUCTION AND CONTEXT

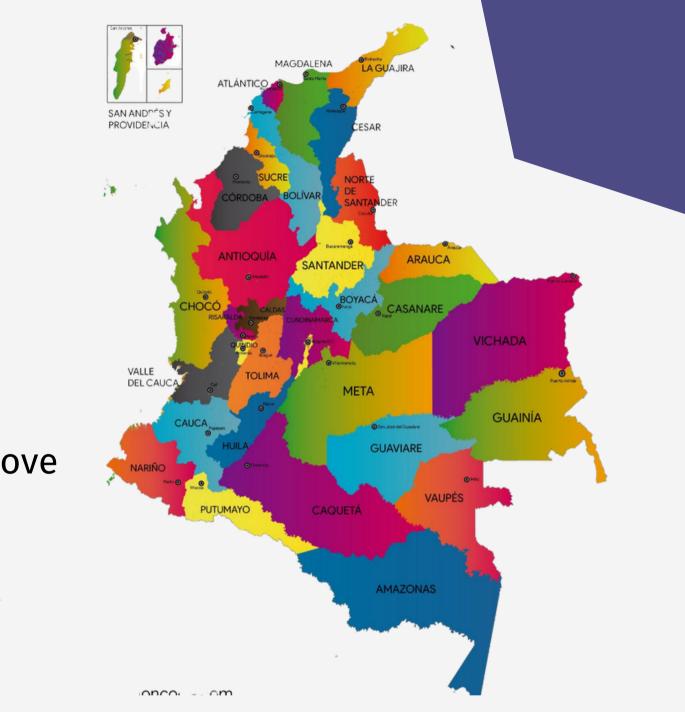
- Demographic data
- Economy
- Energy

2.ISSUES AND CHALLENGES ON GRID

- Key factors
- Understanding the problem with data
- Goals in 2050
- Possible solutions

3.ISSUES AND CHALLENGES OFF GRID


- Key factors
- Understanding the problem with data
- Goals in 2050
- Possible solutions


4.SOLUTION IMPLEMENTATION

- Final solution
- Time line
- Budget
- Impacts

COLOMBIA **General information**

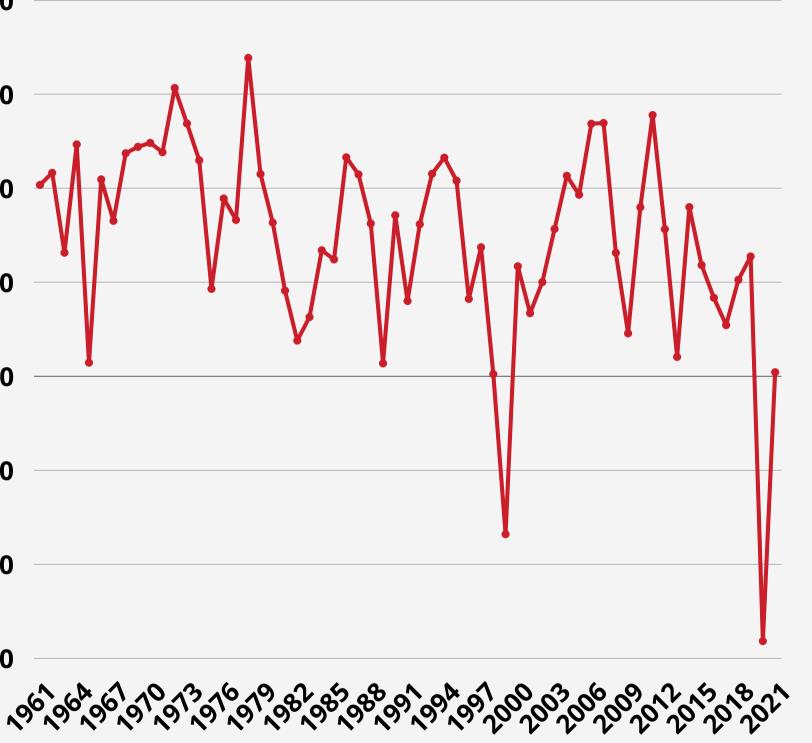
- Located in the extreme northwest of South America.
- Land area: 1,141,748 km2 Maritime domains: 928,660 km2
- The climate is determined by trade winds, humidity and altitude above sea level Source: Consulate of Colombia

• The current population of Colombia is 52,131,382 (the third largest population in South America)

ECONOMY

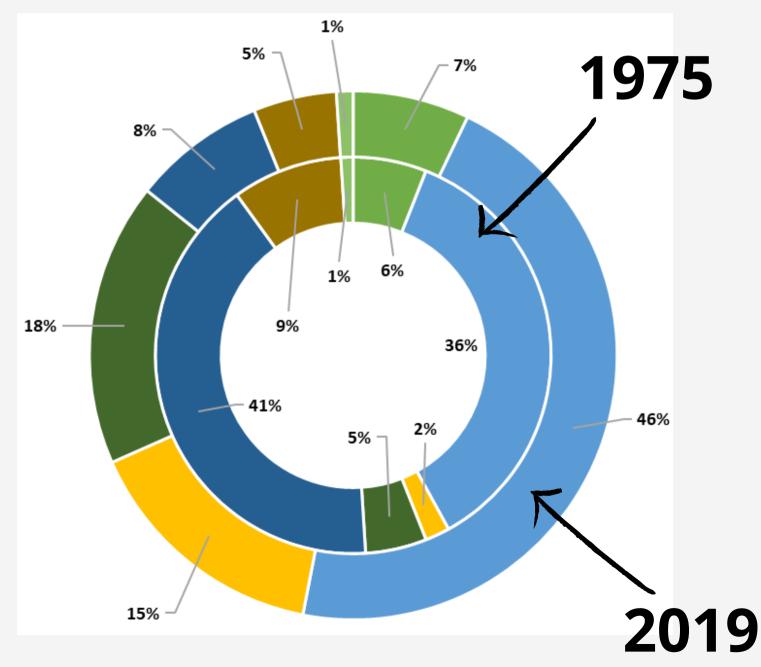
• The Colombian economy has recovered vibrantly from the COVID-19 crisis.

314,3 billions USD


10.000.000.000

7.500.000.000

-7.500.000.000


Source: The World Bank

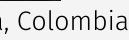
GDP growth (annual %)

ENERGY matrix 1975 - 2019

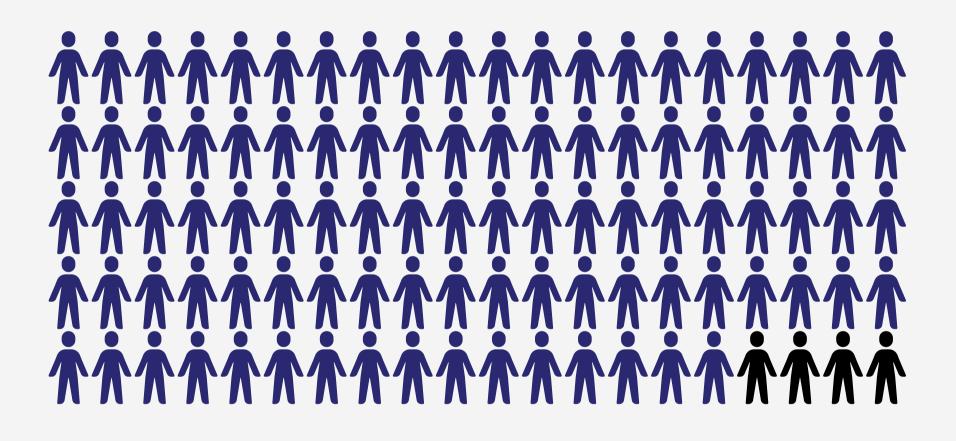
Source: UPME, 2020

Colombia's laws aim at energy transition

- Mineral Coal Oil & derivatives Natural gas Electricity Wood Bagasse
 - Other


ACCESS TO ELECTRICITY in Colombia

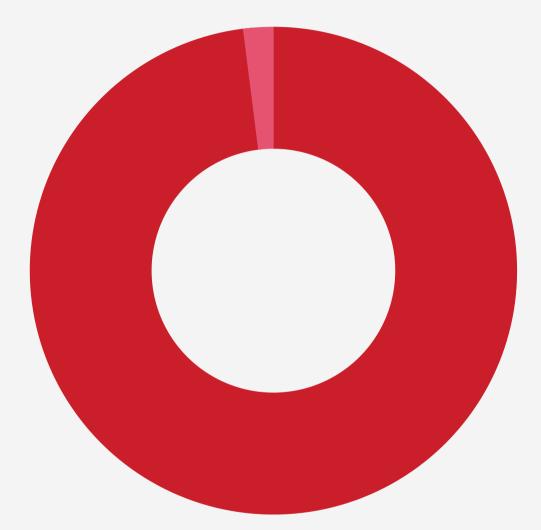
Medellín, Antioquia, Colombia



Source: UPME, 2019 IPSE, 2022

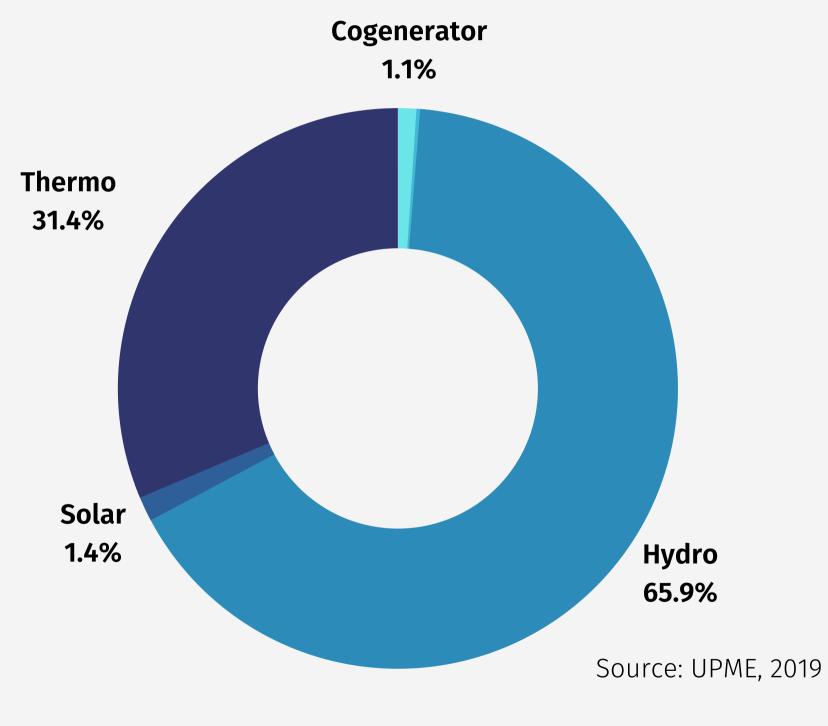
Introduction and context

ACCESS TO ELECTRICITY in Colombia



96.53 % of the population have acces to electricity.

Source: UPME, 2018


Off Grid - Users 2%

On Grid - Users 98% **Distribution of electricity** users

ON GRID SYSTEM

Electricity generation in ON GRID System Total capacity installed: 18156,07 MW

KEY FACTORS: ON GRID

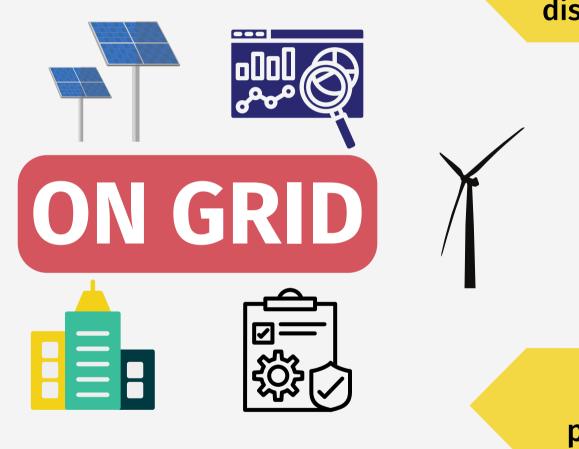
- Dependence on hydroelectric generation.
- The support system is thermoelectric that work with fossil fuels and also is expensive.
- Energetic monopoly; there are few companies that provide energy service.
- In some points of the grid the quality of the sevice is deficient.
- The consumption of the energy is very ineficient.
- Colombia is a potential energy hub for the region and the country can change its dendence on the exportation of fossil fuels.

CRUCIAL FACTORS	OBJECTIVE	INDICATORS	BASE LINE	GOAL 2050
Reliability	Matrix diversification	% of non- conventional energy sources in the energy matrix	Rating: C Ranking:73	Rating: A
	Resilient energy infrastructure	Service quality indexes	SAIDI: 37.7 h/year SAIFI: 48 times/year	SAIDI: 3-5 h/year SAIFI: 2-5 times/year
Availabilty	Allow reliable access assuring quality standars	World energy council's energy equity index.	3.1%	12%-20%
Energy efficiency	Efficient uses of eneregy resources	% of useful energy	31%	50-70%
STI (Science	Promote research	# research groups	210	210+
Technology Innovation)	and innovation, encourage human technical skills	GDP percentage invested in STI	0.74%	1%
				<i>a</i> Issue

Issues and challenges off-grid

0	N GRID				CHALLENGES			
SC	DLUTION AATRIX	Hydro dependence	Fossil fuels backup systems	Energy monoply	GDP highly dependent of fossil fuels	Energy hub	Energy inefficiencies in consumption	Service quality
	Matrix diversification	X	X		X	X		
	Small hydro				X	X		
Possible solutions	Micro GRIDs and distributed generation			X	X	X		X
	Improvements in grid and coverage expansion				X	X		X
	STI investment and professional training	X	X	X	X	X	X	X

POSSIBLE SOLUTIONS


Matrix diversification

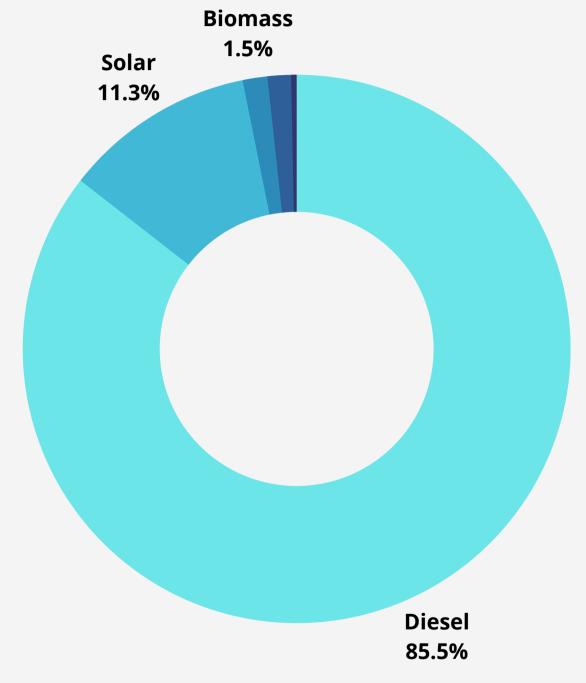
- Solar PV complexes
- Eolic parks
- Biogas/biomass
- Mini Hydro

Improvements in grid and coverage expansion

- International grid to export
- 0&M
- Coverage expansion off-grid to on-grid

Micro GRIDs and distributed generation

- Escalable systems
- New generation areas
- New companies, more competitivity
- Renewbable sources


STI investment and professional training

- Energy efficiency
- Promote research groups
- Financing of industrial technologies
- Scholarships

Issues and challenges on grid

OFF GRID SYSTEM

SAN ANDRÉS Y SISEV

Diésel
 Diésel
 Biomasa - Diésel
 PCH - Diésel
 Fotovoltaico - Di
 PCH
 Biomasa
 RSU

Electricity generation in OFF GRID System Total installed capacity: 309.43MW

Source: IPSE, 2022

Introduction and context

KEY FACTORS: OFF GRID

- The users only have electricity few hours in the day.
- There are people that are still out of the on-grid and off-grid energy system that need the access to energy.
- The generation in off grid system depends on diesel plants.
 There is a lack of proper telemetry monitoring system that helps to know how the
- There is a lack of proper telemetry monitoring system service of electricity is in the off grid.
- The off grid population have low payment capacity and low educational level.
- This population still cooking with firewood.
- There is a difficult on the O&M on the projects and the community is not included in the implementation of those projects.

とり
1
1

CRUCIAL FACTORS	OBJECTIVE	INDICATORS	BASE LINE	GOAL 2050
Doliobility	Matrix diversification	% of non-conventional energy sources in the energy matrix	Rating: C Ranking:73	Rating: A
Reliability	Service quality improvement	% of users with more than 10 hours per day of electricity service in Off grid	36%	75%
Availabilty	Allow reliable access assuring quality standars	World energy council's energy equity index.	3.1%	12%-20%
Energy efficiency	Efficient uses of eneregy resources	% of useful energy	31%	50-70%
	Promote research and	# research groups	210	210+
STI (Science Technology Innovation)	innovation, encourage human technical skills	GDP percentage invested in STI	0.74%	1%
	Digitization and data usage in the energy sector	% of localities with telemetry monitoring system	9%	90-100%
Sustainable development	Transition to modern cooking fuels	per capita consumption of unclean cooking fuels	132 Ton/1000 hab	36-70 Ton/1000 hab

Source: UPME, 2020

MAT	RIX	CHALLENGES													
	JTIONS -GRID	Diesel dependency	Low telemetry of service	Service quality	Low payment capacity	Lack of professionals and technicians	Inneficient project management	Cooking with firewood							
	Hybrid systems with renewable sources	X	X	X				X							
	Pre-paid system		X		X										
Possible	O&M contracts		x	x		x	x								
solutions	Micro GRIDs and distributed generation	X	X	x				X							
	STI investment and professional training	X	X	X	X	X	X	X							
							🥔 Issues	and challenges	off-gr						

POSSIBLE SOLUTIONS

Energy Systems

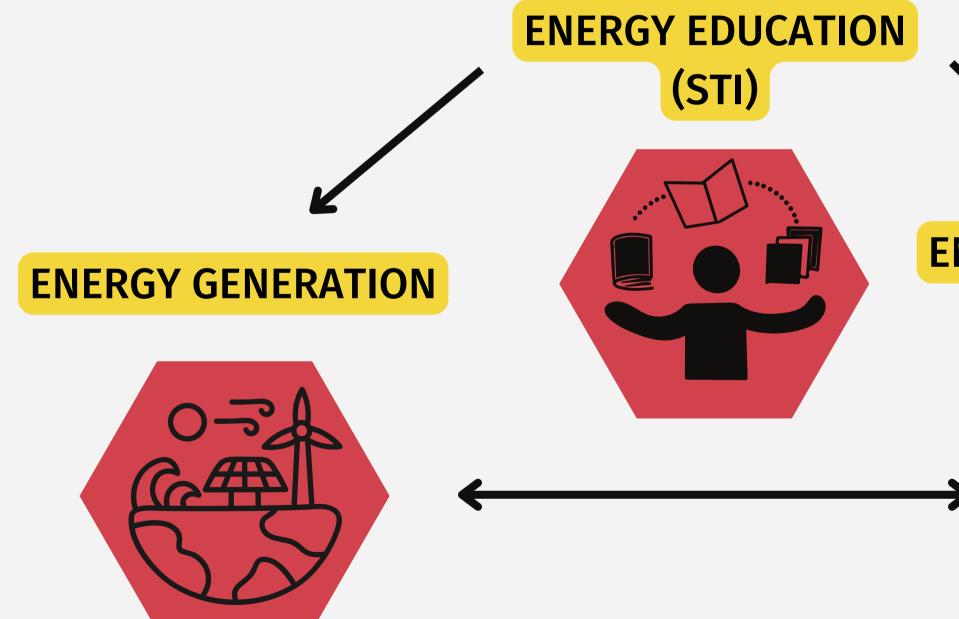
- Individual Solar PV systems
- Mini Solar PV systems
- Digital telemetry

Involvement of the offgrid communities

- Training in energy
- Local Employement opportunities
- Improve the local economy

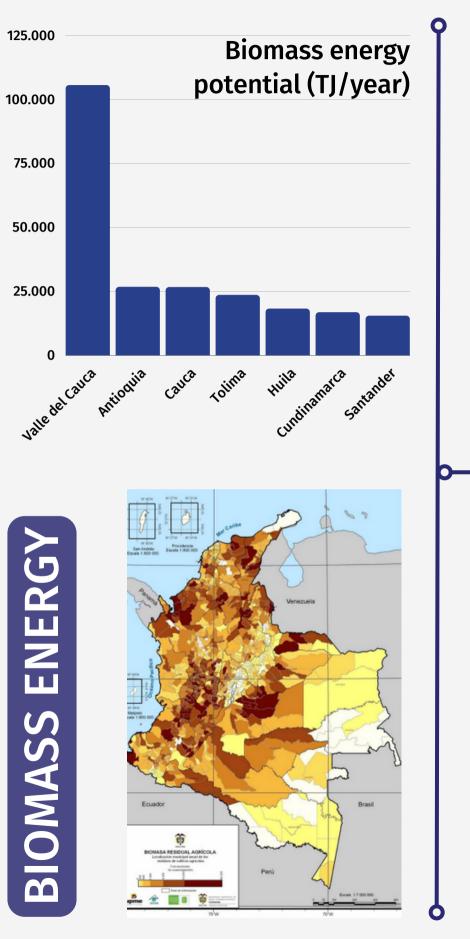
- Electric cooking technologies • Digital telemetry in old energy
- systems
- Scholarships

O&M Contracts

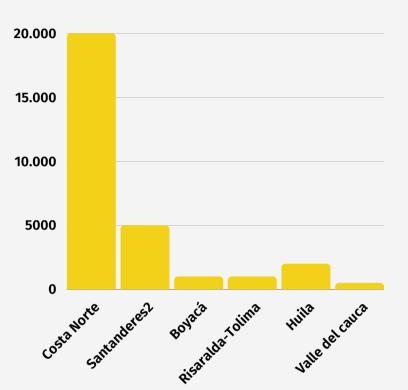

• Big energy companies • Corporate social responsability • Extend projects lifecycle

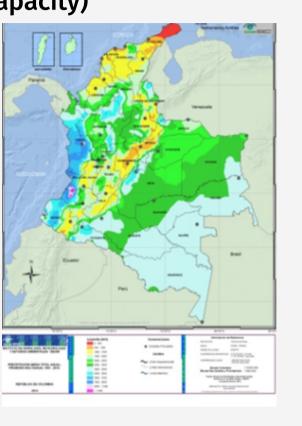
STI INVESTMENTS

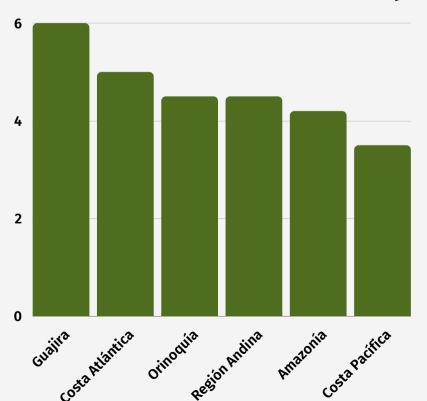
IMPLEMENTATION

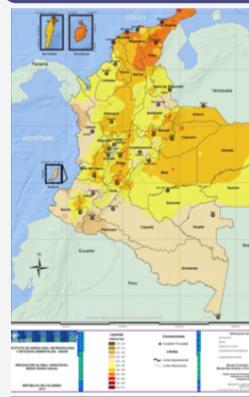

THE 3 PILLARS OF WORKING FOR CHANGE

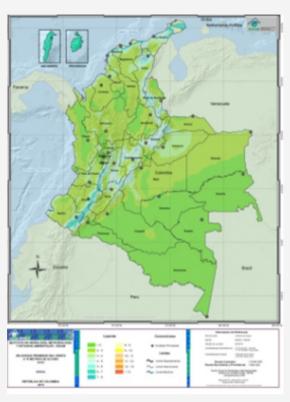
ENERGY INFRAESTRUCTURE IMPROVEMENTS

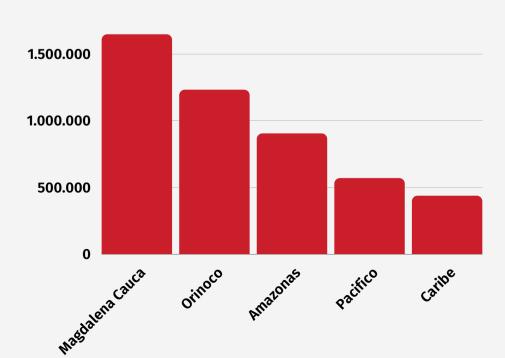



Source: UPME, 2015


WIND ENERGY ENERGY GENERATION


Wind energy potential (MW installed capacity)


Solar irradiation (KWh/m2/day) SOLAR ENERGY



HYDRO ENERGY

Mini hydro energetic potential (kW installed capacity)

2.000.000

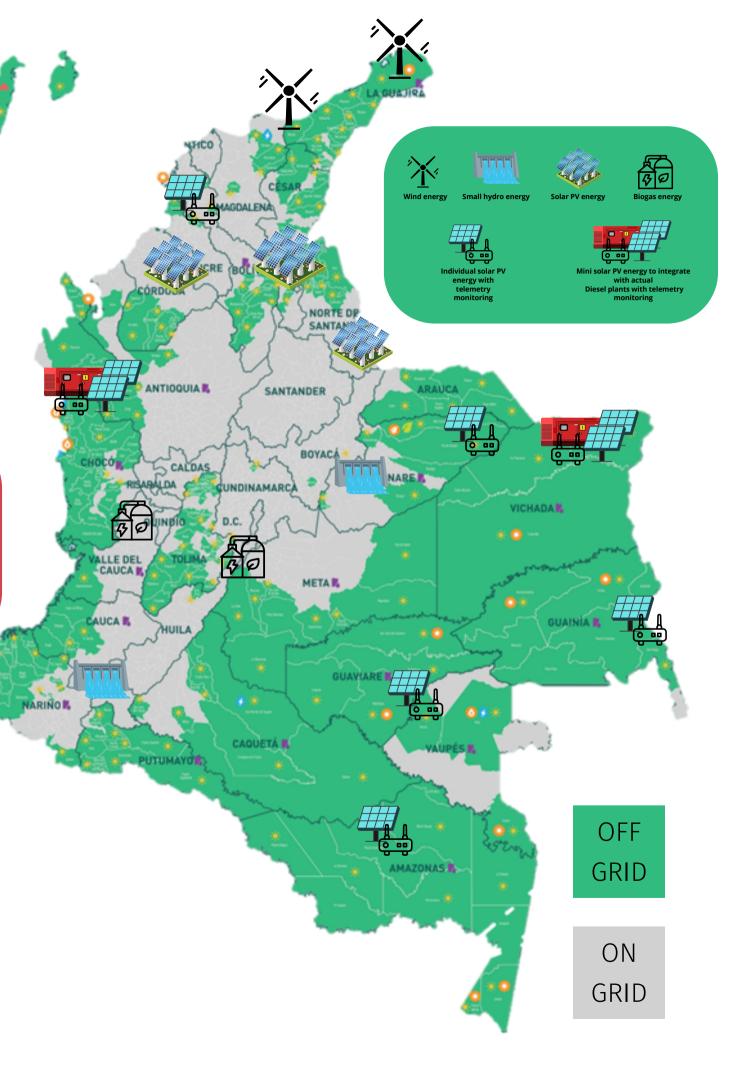
Source: IRENA, 2022

COST OF RENEWABLE ENERGY

Type of energy	CAPEX (USD/kWh)	LCOE (USD/kWh)	OPEX (% of CAPEX per year)	CAPEX + OPEX of a 25 year generation project (USD/kWh)
Solar PV energy	857	0.048	0.5% - 1.5%	1071.25
Biogas energy	2353	0.067	2% - 6%	4706
Hydro energy	2135	0.048	1% - 4%	3469.4
Eolic energy	1325	0.033 Sources IRENA,	5% - 9% 2022	3643.75

ENERGY GENERATION

ON GRID


- This solution takes advantage of the vast resources to produce energy across the country land.
- The installed capacity for the ON GRID solution is 330 MW distributed on different energy generation plants of 20MW or less.
- The generation plants will be ubicated in the extremes of the on grid.
- It is necessary to connect the new generation plants to the grid.
- The energy matrix will be diversified and climate-proof.

ON GRID + OFF GRID

The generation in the extremes of the on grid is going to improve the quality of the service for the population of the extremes of the grid and integrate off grid users to the grid.

OFF GRID

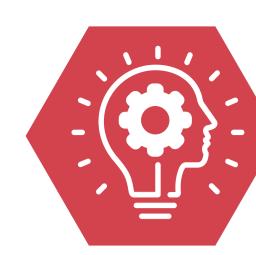
- The solar PV energy is the option for the OFF GRID because is modular and is the cheapest nowadays.
- The installed capacity for the OFF GRID solution is 236MW, that are divided in Mini Solar PV system of 0.5MW and Individual Solar PV system of 0.2kW.
- The individual Solar PV system solution is for the users that don't have access to energy at this moment.
- The Mini Solar PV system is for connect this system and strength the diesel plants that generate energy for the OFF GRID communities at the moment.
- All the installed system will have telemetry monitoring systems.

ENERGY INFRASTRUCTURE IMPROVEMENTS

Connect off-grid areas to the grid

Energy export infrastructure to neighbour countries

Grid maintenance and technology jump


Co-financing industry efficient machinery in order to increase useful energy vs energy produced

1

ECUADOR

EDUCATION - STI

• Replacement of unclean fuel stoves

• Scolarships for energy related careers

• Financing on nuclear and hydrogen energy generation research

• O&M Suport and training for local communities given by the ON GRID energy companies.

OVERVIEW OF THE PLAN

- \$411.335.833 USD per phase
- \$1.234.007.500 USD for 30 years
- 10 years to complete each one
- Loan every ten years, every one paid off in that time (10 years)

2023

Phase 1 initiates

- Solar parks X 3
- Eolic parks X 1
- Mini hydroelectric plant X 1
- Biogas complex X 1
- Hybrid systems
- Individual PV system
- Improvements on grid
- STI programs

2032

Phase 2 initiates

- Solar parks X 3
- Eolic parks X 1
- Mini hydroelectric plant X 1
- Biogas complex X 1
- Hybrid systems
- Individual PV system
- Improvements on grid
- STI programs

2041

Phase 3 initiates

- Solar parks X 3
- Eolic parks X 1
- Mini hydroelectric plant X 1
- Biogas complex X 1
- Hybrid systems
- Individual PV system
- Improvements on grid
- STI programs

\$ 145.992.500 Million USD (aprox. 10% of total budget) for contingencies and unexpected events

2053

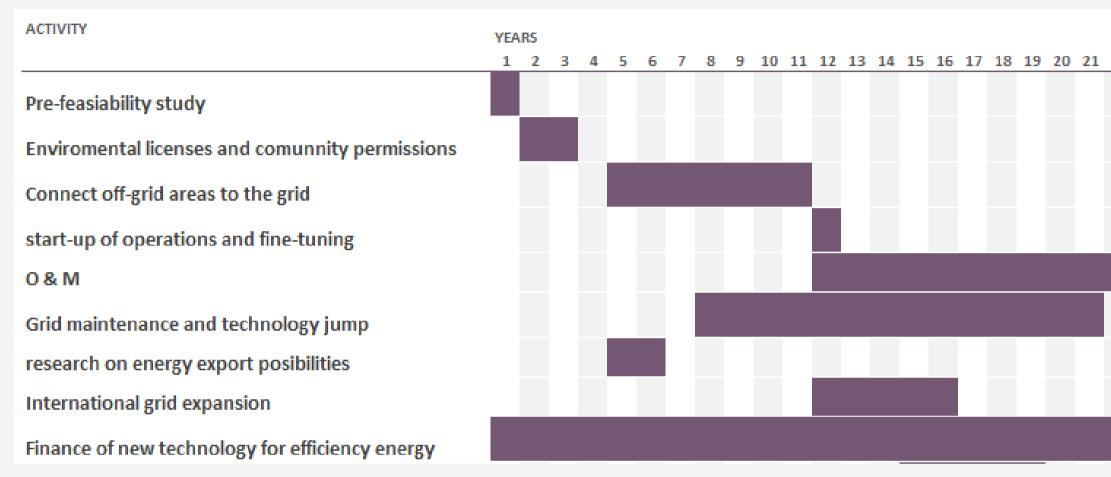
All 3 phases of the implementation are in operation

- Evaluation of the indicators
- Project closes

TIMELINE - ENERGY GENERATION

ACTIVITY	YEAR	RS																							
	1	2 3	4	5 (57	8	9 1	0 11	1 12	13	14	15 1	6 1	7 18	19	20	21	22 2	23 2	4 25	5 26	5 27	28	29	30
Pre-feasiability study (PHASE I)																									
Loan acquisition (PHASE I)																									
Enviromental licenses and comunnity permissions (PHASE I)																									
Land acquisition (PHASE I)																									
Construction of the generation system and connection to the grid (PHASE I)							١.																		
Implementation of the new generation system in off grid communities (PHASE I)				ų																					
Final tests of the generation system (PHASE I)							1	L																	
start-up of operations and fine-tuning (PHASE I)									L						_							_		_	
O & M (PHASE I)																									
								-																	
Pre-feasiability study (PHASE II)									Ū															1	
Pre-feasiability study (PHASE II) Loan acquisition (PHASE II)								ľ																	
								ľ																ļ	
Loan acquisition (PHASE II)								l			ļ														
Loan acquisition (PHASE II) Enviromental licenses and comunnity permissions (PHASE II)																									
Loan acquisition (PHASE II) Enviromental licenses and comunnity permissions (PHASE II) Land acquisition (PHASE II)																									
Loan acquisition (PHASE II) Enviromental licenses and comunnity permissions (PHASE II) Land acquisition (PHASE II) Construction of the generation system and connection to the grid (PHASE II)																									
Loan acquisition (PHASE II) Enviromental licenses and comunnity permissions (PHASE II) Land acquisition (PHASE II) Construction of the generation system and connection to the grid (PHASE II) Implementation of the new generation system in off grid communities (PHASE II)																									

Solution implementation


TIMELINE - ENERGY GENERATION

PHASE

ACTIVITY	YEAI	RS																									
	1	2	3	4	5	6	78	9	10	11	12 1	3 1	4 15	16	17 1	8 1	19 20) 2:	1 22	23	24 2	5 26	27	28 :	29 3	0 3	1
Pre-feasiability study (PHASE III)																J	ų,	Ŀ									
Loan acquisition (PHASE III)																											
Enviromental licenses and comunnity permissions (PHASE III)																			U,								
Land acquisition (PHASE III)																											
Construction of the generation system and connection to the grid (PHASE III) Implementation of the new generation system in off grid communities (PHASE III)																						ľ					
Final tests of the generation system (PHASE III)																								١.			
start-up of operations and fine-tuning (PHASE III)																											
O & M (PHASE II)																											

TIMELINE - ENERGY INFRAESTRUCTURE IMPROVEMENTS

TIMELINE - ENERGY EDUCATION (STI)

ACTIVITY	YEA																									
	1	2	3	4	56	7	8	9	10	11 1	12 1	3 14	15	16	17	18 19	9 2O	21	22	23 2	4 2	5 26	27	28 2	29 30	31
Financing on I+D+I on energy																										
O&M Suport and training for local communities given by the ON GRID energy companies.																										
Co-creation of local community business																										
Scolarships for energy related careers																										

		~ *							-
22	23	24	25	26	27	28	29	30	31

BUDGET - ENERGY GENERATION

Product	Target users	Energy capacity per unit	Cost per unit (USD)	Number of units	Total energy capacity	Total cost (USD)
Biomass energy system	ON GRID - OFF GRID	10MW	94.120.000	3	30MW	141.180.000
Eolic energy sistem	ON GRID - OFF GRID	20MW	72.875.000	3	60MW	218.625.000
Minihydro energy system	ON GRID - OFF GRID	20MW	69.387.500	3	60MW	208.162.500
Solar PV energy system	ON GRID - OFF GRID	20MW	21.425.000	9	180MW	192.825.000
Individual solar PV systems	OFF GRID	0.2KW	214	180000	36MW	38.565.000
Mini solar PV system	OFF GRID	0.5MW	535.625	400	200MW	214.250.000
TOTAL					566MW	1.013.607.500

BUDGET - ENERGY INFRAESTRUCTURE IMPROVEMENTS

Product	Target users	Cost per year	Years of investment	Total cost (USD)
Off grid expansion to on grid and international grid	ON GRID- OFF GRID	400000	12	48.000.000
Maintenance and renovation of the grid	ON GRID	400000	14	5.600.000
Finance of new technology for efficenct energy consumption	ON GRID	300000	30	90.000.000
TOTAL				143.600.000

BUDGET - ENERGY EDUCATION (STI)

Product	Target users	Cost per unit USD/each	Number of units	Total cost
Scolarships for bachelors degree related to clean energy	ON-GRID AND OFF GRID	10.000	6000	60.000.000
Finance research groups in Hidrogen and Nuclear energy	ON-GRID AND OFF GRID	500.000	30 years of investment	15.000.000
Electric stoves in replacement of unclean fuel stoves	OFF-GRID	10	180000	1.800.000
TOTAL				76.800.000

FINANCE

Bank	Interest rate	Amount to be loaned (USD)	Grace period
WB- WORLD BANK	3%	411.335.833	10 Years
IDB- INTERAMERICAN DEVELOPMENT BANK	3%	411.335.833	10 Years
CAF-LATINAMERICAN DEVELOPMENT BANK	3%	411.335.833	10 Years

Time to pay	Amount to be paid (USD)
10 Years	\$ 552.800.963,83
10 Years	\$ 552.800.963,83
10 Years	\$ 552.800.963,83

IMPACT IN SDG

Colombia has set its SDG goals, we aim to make a better country with this implementation, these are the ones we plan to influence directly

Baseline (2015): 49,4% Goal (2030): 80,0%

Baseline (2015): 96,9% Goal (2030): 100%

Baseline (2015): 8,6% Goal (2030): 17,9%

Baseline (2015): 0% Goal (2030): 20,0%

Solution implementation

IMPACTS IN DATA

0,168

Number of beneficiaries per dollar spent **OFF-GRID**

122,3

kWh/usd All energy generation

900k

New users of energy in rural areas (OFF-GRID)

Total installed capacity for 2050 (MW)

122,3

Solution implementation

CONCLUSION

- - Reinforce what we have: strengthen interconnected system at the ends where the quality is not as high as it could be. Through maintenance and the development of new generation plants.

• Aim to new technologies: the matrix can be diversified with the proposed solution, taking advantage of the potential of each region of the country.

 Education is a must: strong component in education and research, in association with the national industry, joining efforts for the country's progress.

