Switch Energy Alliance Case Competition NEPAL

Mentor: Mohammad Tamim

Ayush Kumar Jha Anurag Bhattacharya Apurv Shandilya Umang Tulsan

Nepal at a glance

Total population: 29 million

Rural population: 79%

Total area:140,800 sq. km


GDP: \$33.66 billion

Population below poverty line: 50.3%

multi-religion demography

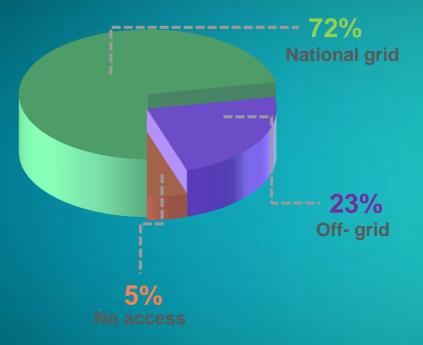
Multi-lingual, multicultural, and

GDP per capita: \$1155

Electricity access: 90%

Source: Nepal outlook, world bank

Nepal: The two wheels to a stable ride


Problems and challenges

Electricity access

Total population

- Off grid: Mini grid and solar lighting system(SLS) are most common
- 5 % having no access rely on solid fuel for lightning
- National grid connection suffers from crippling supply(47% get 24 hrs. electricity)
- Remaining 53% invest in backup: SLS, Battery power which creates financial burden.



Challenges of On-grid systems

- 70% of households suffer from reliability issues(Unscheduled power outages)
- Unaffordable supply for distant households due to difficult terrain
- Administrative barriers to get ON-grid supply

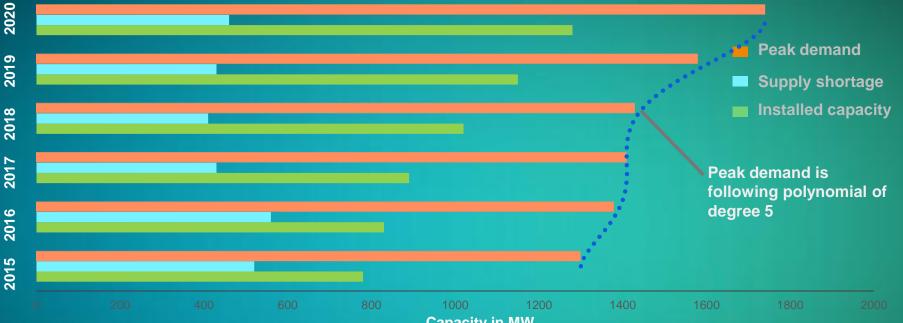
- 17% household reports voltage fluctuations Appliances Damage
- Added financial burden : Unreliability causes Additional expenditure on backup sources(~ \$3)

Capacity constraints: Lack of capacity leads to imposed restriction on usage

Limited supply: Usage of low power devices(light, radio, television)

Low consumption \longrightarrow Lack of economic growth

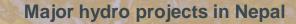
Lack of proper investment and regulations

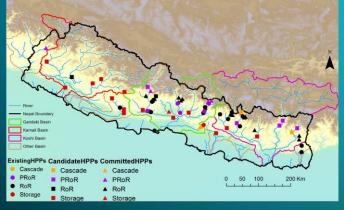


Limited awareness among population

Grid access allocation

Demand vs Supply

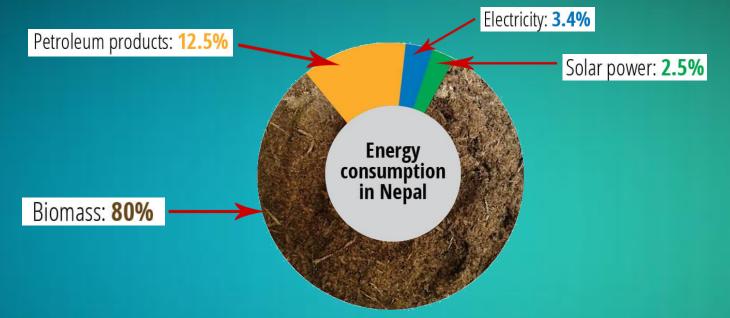

Capacity in MW


- 85% of electricity consumed by residential sector. There is significant shortage of electricity which •*****• is the cause of low economic growth.
- Average shortage of 545 Mw over the last 5 years and due to lack of infrastructure propelled Nepal ** to import electricity from India
- Significant transmission and distribution loss (15%-18%) is the major cause of inefficiency. ** Highest in Janakpur(30%) in province 2.

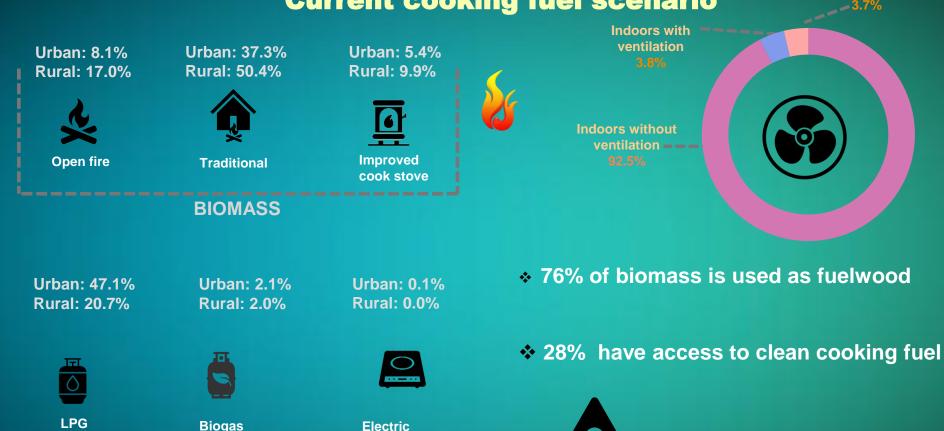
Source: Gov of Nepal, Water and energy commission secretariat

Supply of electricity

Source	No. of projects	Capacity(M W)
Hydro(*NEA)	16	563
Hydro(*IPP)	62	560
Diesel	2	53.4
Solar	2	1.68
Import fr	400	



99% of total	River Basins	Theoretic al Potential(MW)	Technical Potential(MW)	Economic Potential(MW)
nstalled capacity	Sapta Kosi	22350	11400	10860
	Sapta Gandaki	20650	6660	5270
	Karnali and Gandaki	36180	26570	25125
	Southern River	4110	980	878
	Country total	833290	45610	42133
				al that can exploit
Particulars	C	apacity(M)		
Total installed		1123		
Under construction	ו	1017		
Planned and propos	ed	2920		


Source: AEPEC, ESMAP

Cooking fuel access

- Biomass, in the form of fuelwood, animal waste, and crop residue, is dominant in the energy mix
- Majority of biomass is used for cooking and lighting in urban as well as rural Nepal
- Due to unaffordable and unreliable supply of electricity, majority of population rely on biomass as their primary source of energy
- Nepal imports all of its petroleum products
 from India
 Source: Asian Development bank report

Current cooking fuel scenario

Source: ESMAP

Dangerous!

Outdoor

Challenges with cooking fuel

Energy poverty in Nepal

Nepal has the highest energy poverty in South Asia with 90 KWH of electricity and 15 GJ of primary energy consumptions per capita in a year. Nepal has highest photovoltaic and hydro potential

Disparity

Energy Poverty: The Impact on Health

- 66% of households use unclean fuel, 45% do not have separate kitchen to cook, and 43% have indoor smoking
- Family is prone to indoor air pollution
- Health centres cannot afford apt medical equipment
 due to lack of stable energy supply
- Emergency Medical services and infrastructure are restricted due to lack of electricity.

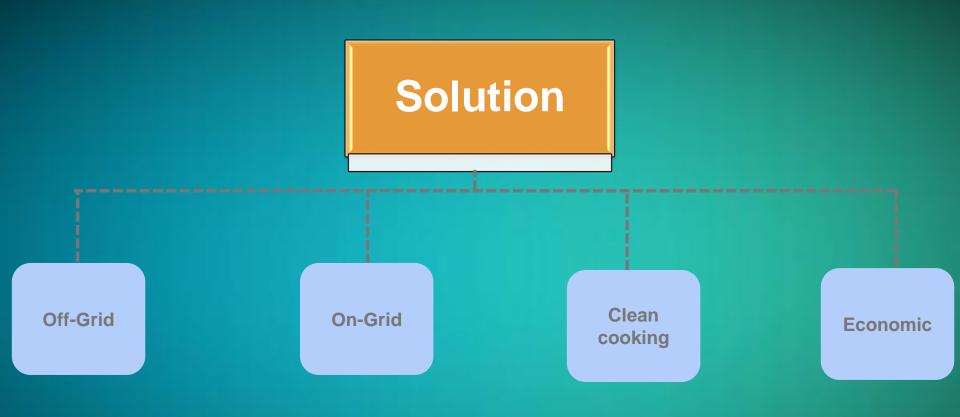
Source: World bank, ESMAP

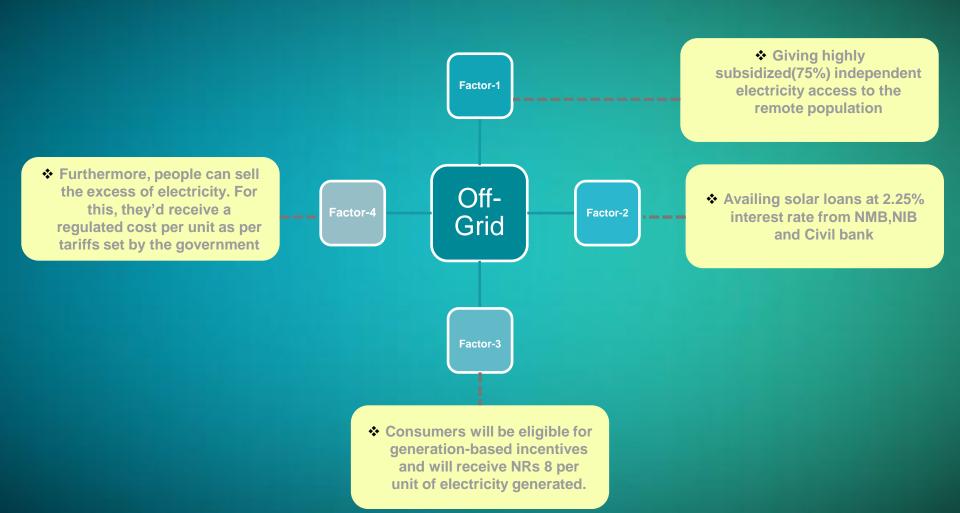
Problem statement

The lack of proper, consistent and efficient supply of electricity impedes the general well being and development of the people

Limited access to clean cooking fuel hampers health and environment alike.

Failure to harness the tremendous solar and hydro potential Nepal has leads to inadequate economic growth impacting all other aspects adversely.

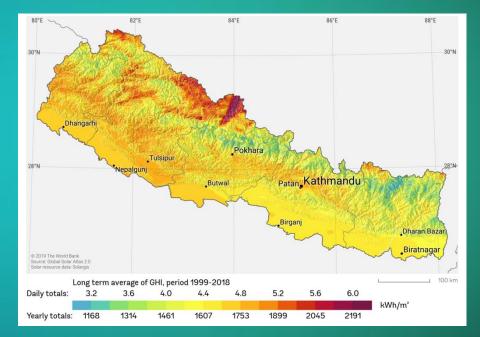

Solution



***** For ease and efficient implementation of our solution we prefer the following division of population

Tier	Load level	Population distribution based on electricity access	Population distribution based on cooking fuel access
Т-0	No access	6.29%	52.9%
T-1	Very low 3-49 W	15.3%	1.9%
T-2	Low 50-199 W	11.5%	6.4%
Т-3	Medium 200-799 W	31.7%	8.2%
T-4	High 800-1999 W	17.91%	2.8%
T-5	Very high 2000 or higher	17.3%	14.7%

Source: MTF survey,world bank group

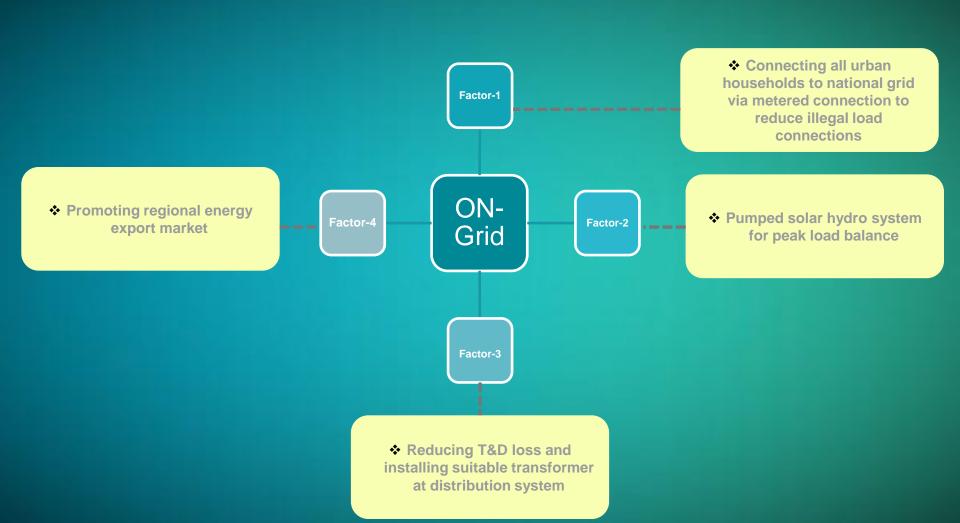


Solar panels to be used: 40Wp, 210Wp, 840Wp, 1680Wp

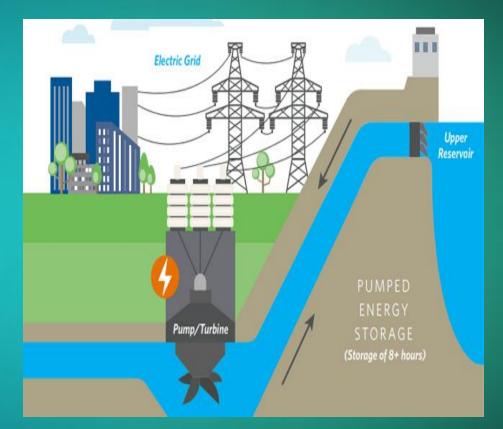
Ranking in terms of PV potential

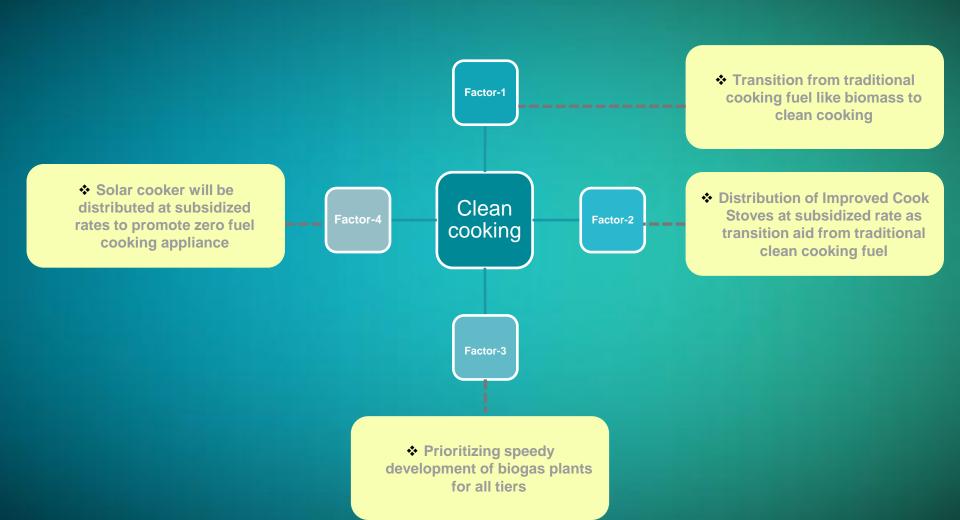
Province name	Ranking
Karnali	1
Gandaki	2
Province 1	3
Lumbini	4
Sudarpaschimi	5
Bagmati	6
Province 2	7

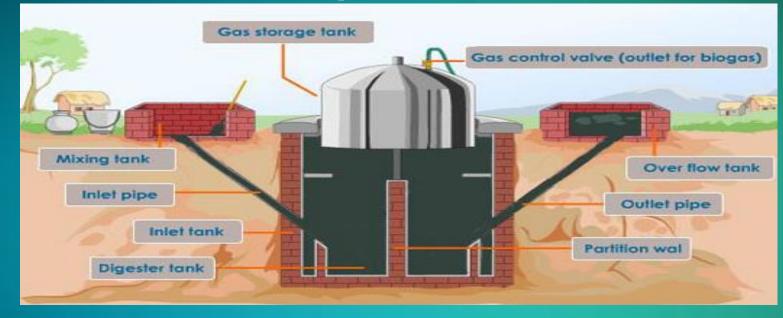
Location


Source:https://www.hydropower.org/ blog/solar-energy-with-pumpedstorage-hydro-in-nepal

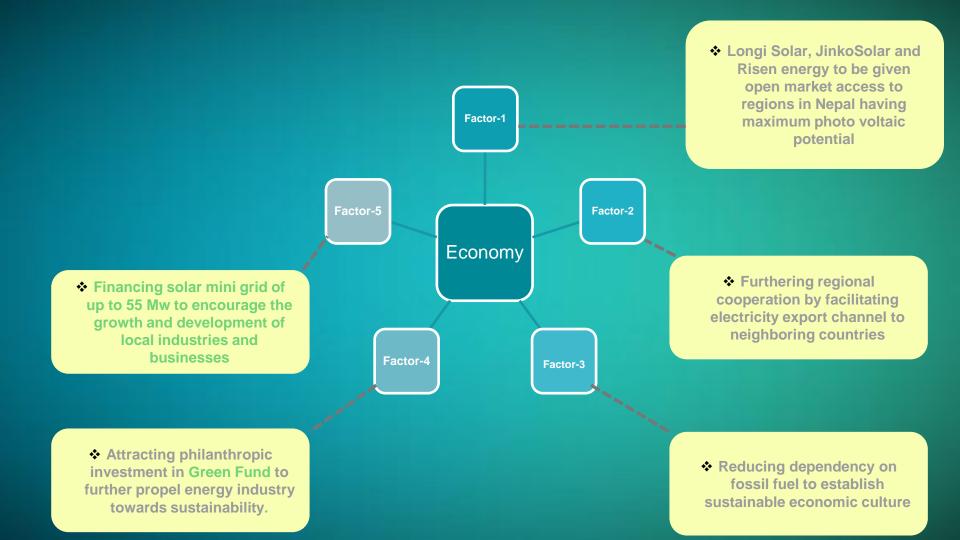
Proposed companies


Company	Headquarter	Type of panel	Warranty range	Capital value (\$ billion)
LONGI Solar	China	Monocrystalline	12 years	63.039
JinkoSolar	China	Half-cell technology	12 years	2.73
Risen Energy	China	Thin film amorphous silicon	12 years	20.019


These are the three organizations tasked with developing the solar projects across Nepal.


Source:Solar companies

- Managing peak load demand by installing total of 20 Mw Solar pumped hydro plant at different sites. Karnali province and Province 1 has highest potential
- Solar arrays are used to pump water during day time.
- Stored water can be used whenever there is need of extra power in Nepal and in neighboring country as well
- Managing power outages in during dry season i.e. in summer and winter.



Providing ICS as transition aid from traditional cooking to clean cooking

- The incentive rate from the Nepalese Government per unit electricity produced is \$ 0.065
- ***** The per unit tariff rate set for solar electricity is \$ 0.03.
- Local cottage industries and multi-centered small-scale industries will be given 50% subsidies to be paid off in 5 years at very low interest rate of just 2.5 %
- ***** The stored energy can be exported at 0.08\$ per unit.

Off-Grid Solar						
Phase	Capital amount (\$ mn)	Lender	Total cost (\$ mn) (Capital+intrest)	Pay off period(Yrs)	Simplified cost to household	
1(2021-2030)	51.5	NMB Bank	64.334	10	\$ 17.8	
2(2031-2040)	51.5	NIB Bank	64.334	10	\$ 17.8	
3(2041-2050)	51.5	Civil Bank	64.334	10	\$ 17.8	
Cooking fuel						
Phase	Capital amount (\$ mn)	Lender	Total cost (\$ mn) (Capital+intrest)	Pay off period(Yrs)	Simplified cost to household	
1(2021-2030)	48.28	World bank	49.49	10	\$ 12	
2(2031-2040)	24.14	World bank	24.74	5	\$ 12	
Pumped hydro						
Phase	Capital amount (\$ mn)	Lender	Total cost (\$ mn) (Capital+intrest)	Pay off period(Yrs)	Tarrif rate(export)	
1(2021-2035)	56	Asian development bank	71.89	11	\$ 0.08 /KWh	

Industrial mini grid

Phase	Capital amount (\$ mn)	Lender	Total cost (\$ mn) (Capital+intrest)	Pay off period(Yrs)	Pay off cost / 100Kw
1(2030-2035)	14.7	Asian development bank	16.63	5	\$ 11,400 / year

Cost requirement

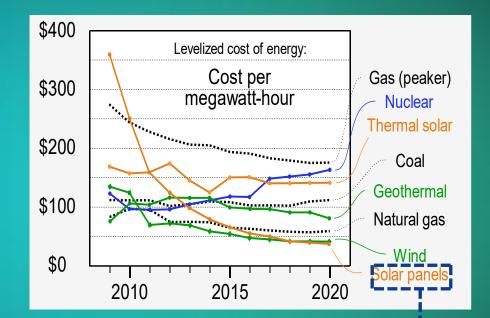
Primary Power Projects

Projects	Target po	pulation	Energy capacity	Total installation cost(\$ million)	Subsi applic		Net project cost (\$ million)
Individual solar	Isolated+N rural (9.4	<u> </u>	6760 GWh	206	75	%	154.5
On-grid connection	Urban connect grid(1.09	ted to	Grid connection	14.06	N	A	14.06
Biogas plant	Househole tiers(6.07		5.42 million m3	72.42	N	A	72.42
Pumped hydro	Peak demand balance(On-grid)		20MWp	56	N	A	56
Auxiliary projects							
Subsidized pro	Subsidized products Target population		get population	Subsidy		Subsidy	/ amount (\$ million)
Improved cook stoves during transitionHouseholdsTier-0,1,2,3(3.4 million)		10% per un	it		6		

Extra cost

Туре	Cost (\$ million)
Maintenance	30
Upgradation(T&D + existing projects)	15
Campaigning(Solar cooker)	3
Mini grid financial aid(55Mw)	14.7

Total cost


Allocated budget (\$ million)	Proposed Budget (\$ million)	Remaining (\$ million)
370	365.68	4.32

Implementation Timeline

Viability Off- grid solar

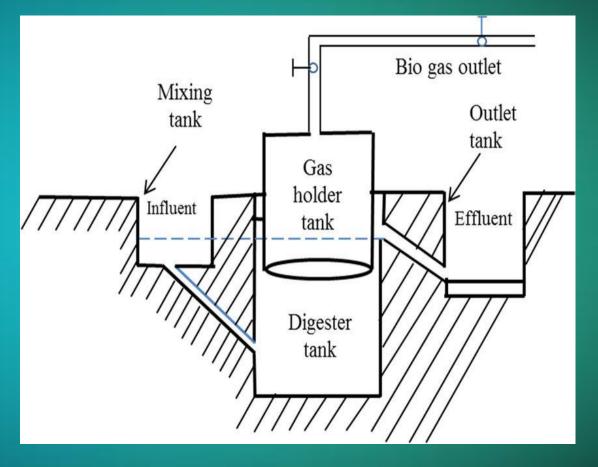
- All parts of Nepal are favorable for solar energy
- Price of solar panel which comprise 60% of total cost of project, is falling down due to improved technology.
- Total solar resource accounts for 7000 times more potential than current consumption.
- Average irradiation in Nepal is around 4.5 KWh/sqm which is more than sufficient to provide low cost solution
- The biggest markets for Solar energy are in the rural areas unconnected to the grid.
- The top three provinces are Karnali, Gandaki, Province 1, with a practical PV potential of 342.85 TWh.

Currently solar power is most affordable and its price will continue to fall in future

Source:https: Wikipedia/ LCOE of renewables

Solar Pumped hydro storage

- Having an enormous solar potential, Nepal has vast low-cost off-river solar pumped hydro-energy-storage potential
- Eliminating the need for on-river hydro storage and moderating the need for largescale batteries in solar power.
- Easy to operate and can supply instantaneous power whenever needed
- By adopting Solar pumped hydro instead of large scale dams, ecological integrity will be preserved



- Nepal has hundreds of 50GWh pumped hydro storage site
- Karnali province has highest number of sites

Source:https://www.hydropower.org/ blog/solar-energy-with-pumpedstorage-hydro-in-nepal

Biogas system

- Farming system in Nepal is heavily dependent on livestock
- * 1.2 million households owning cattle and buffalo
- Out of total potential 57 percent
 located in the Terai plains, 37 percent
 in the hills and 6 in mountain
- Biogas is a healthier, much cleaner alternative to biomass

Cultural and economic impact

- Industrial Growth will be encouraged.
- Local cottage industries and multi-centered small-scale industries will be encouraged and supported
- Encouraging industrial growth will boost the economy and encourage FDI.
- ***** The tourism sector will boom with increased electrical capacity.
- Clean cooking fuel will eradicate health ailments like cardiovascular disease and cataract and improve quality of life

A major problem of deforestation will be solved and biodiversity will be sustained

By adopting efficient power projects like off grid solar; clean, reliable and affordable energy is available to everyone

Quality of life and life expectancy will increase

Conclusion

 Nepal is blessed with vast natural energy resources however their fruitful utilization for the well being of its growing population is lagging behind due to the economic, geographical and techno political conditions

Now with political stability (majority government), adequate experience and FDIs, Nepal can utilize its huge potential in hydropower and solar power to propel its economic growth towards a Developing Country (from LDCS) and be a regional player in fulfilling the energy demand in South Asia.

THANK YOU