Ensuring Development Through Energy Security in the Democratic Republic of Congo

 $\bullet \bullet \bullet$

Jacob Esparza, Kamal Mamdani, Emmett Berger, Yanni Vasilakis KEYJ-190 | United States | Mentor: Brendan Rodgers

The University of Texas at Austin

Vision

Goal 1

Incentivize the private sector to take a leading role in drilling and developing necessary energy infrastructure, increasing electrification to a rural populace, while retaining royalties from profit.

Goal 2

Use royalties collected from private firms to continue investing in energy autonomy, which will lead to a shift towards renewable energy and ensure the DRC will thrive in the future of the energy realm.

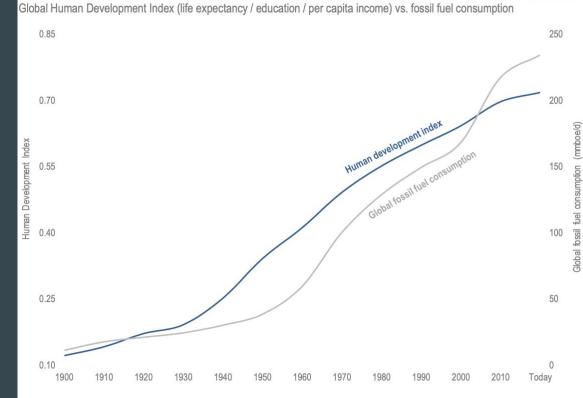
Goal 3

Strategize the most effective ways to implement renewable energy; create a tangible, succinct, and enforceable timeline in order to sustain for the energy consumption of 94 billion KWh in 2040.

Agenda

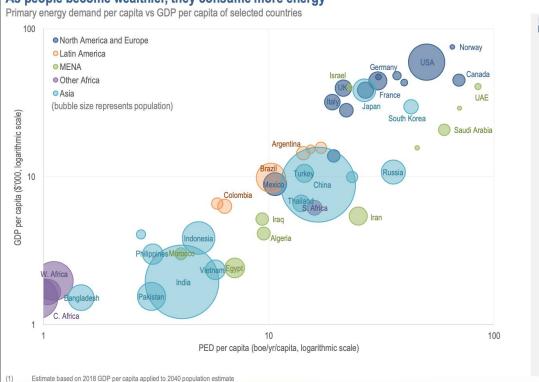
Current Landscape	• Statistics and data on the DRC			
Oil	• Reasons for investing in oil; how to do it			
International Pressure	• Using external pressure to combat corruption			
Natural Gas	• Reasons for investment, best practices			
Sustainability	• Rehabilitation of hydropower plants, exploring geothermal energy			
Timeline	• Plans for execution until 2040			

Current Landscape


GDP: \$47.32 billion (2019); Per-Capita \$501

Languages: French, Swahili, Kongo,Luba-Kasai, Lingala

	2000	2018	2030	2040
Population (millions)	47	84	120	156
Access to electricity (% of pop.)	7	9	16	21
Access to clean cooking (% of pop.)	3	3	4	5

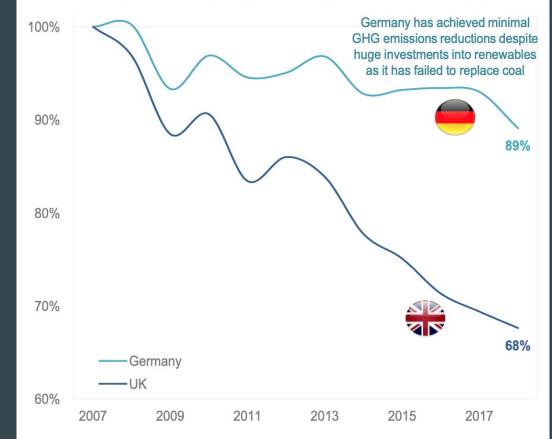

Why Begin with Oil?

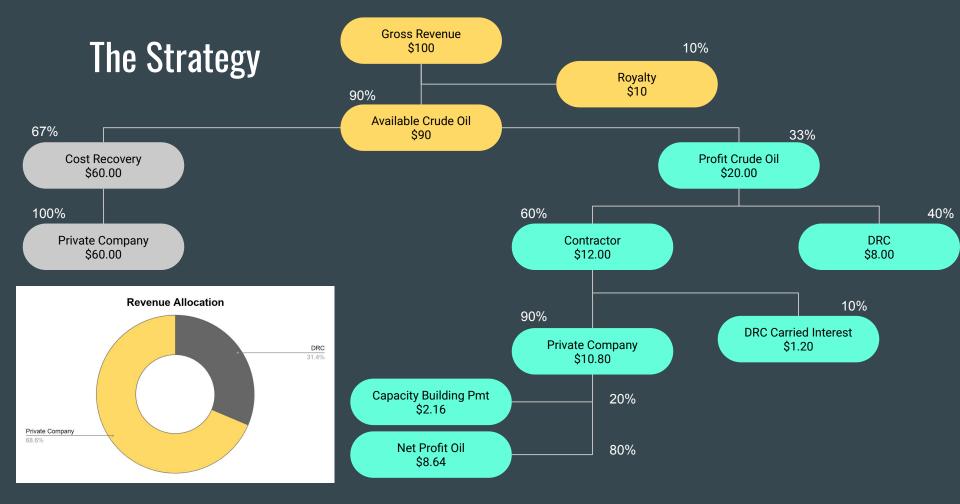
Abundant and affordable energy has underpinned huge progress in the human condition

Source: World Health Organization; United Nations, Rystad Energy

Why Begin with Oil?

As people become wealthier, they consume more energy


Global population


Source: UN Population Division, Bloomberg, BP Statistical Review of World Energy, BP Energy Outlook

Why Begin with Oil?

UK and Germany relative change in greenhouse gas emissions vs 2007 (%)

Source: BP Stats

*Based on \$100 revenue: \$ figures rounded for illustrative purposes 8 **See slides 28 and 29 for full breakdown

International Pressure

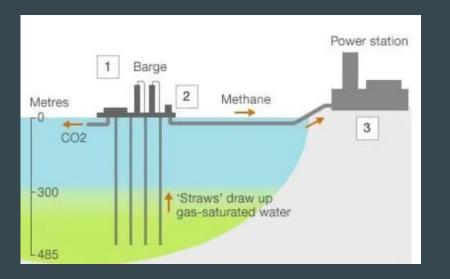
United States

Client Implications:

- United States Department of Commerce
- United States Development Financial Cooperation

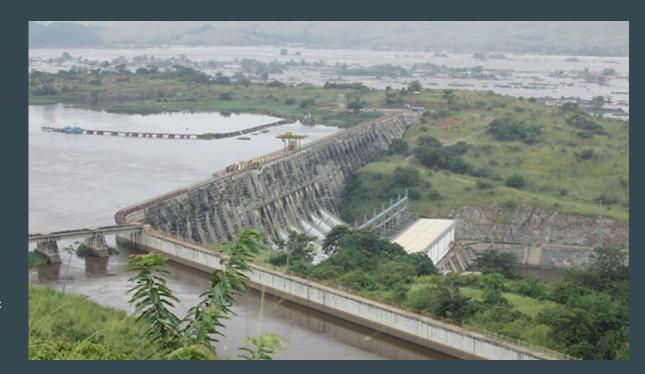
International Organizations

Client Implications:


- United Nations
- World Bank
- Africa National Bank

Extraction of Natural Gas: Lake Kivu

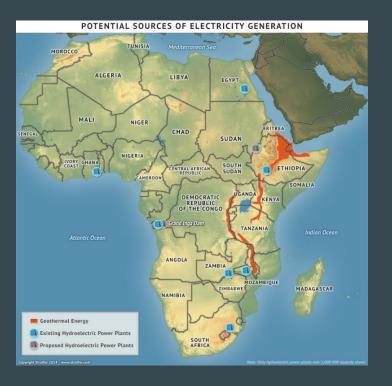
- KivuWatt project in Rwanda: ContourGlobal
 - Phase 1: \$142M; 25 MW
 - Phase 2: \$183M; 75MW



- DRC has the right to 30 billion cubic meters of methane.
- The methane can produce 350 MW over 55 years.
- Extraction would release pressure on the gas which would decrease methane emissions, increasing the quality of life in the area.

Future Sustainability: Hydroelectricity

Rehabilitation of Inga 2 dam


- Cost to rehabilitate:
 - \$884 million
- Additional Energy:
 - > 32,132 MW
- Greenhouse gas emissions saved:
 - 70 million tonnes
- GDP saved by avoiding blackouts:
 - o **1.7%**

Future Sustainability: Geothermal Energy

- High potential for geothermal energy plants along the East African Rift
- Kenya's success with geothermal can be matched by the DRC in the far future

Timeline

Project	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Oil																				
Research and Development																				
Rig Construction and Drilling																				
Oil Extraction																				
Pay off Private Investment																				
Natural Gas																				
Phase 1																				
Phase 2																				
Hydroelectric																				
Rehabilitation of Inga 2																				
Geothermal																				
Begin Research																				

Conclusion

The Team

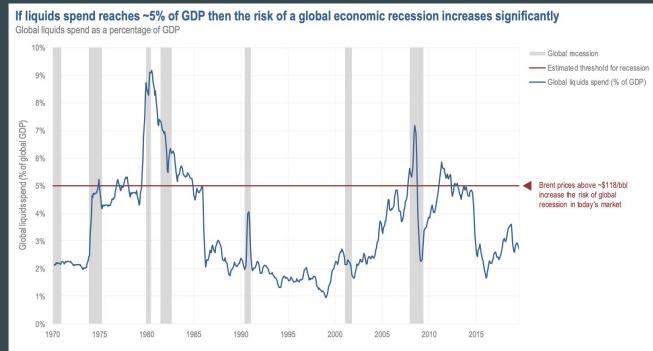
Jacob Esparza

Sophomore Finance major at the McCombs School of Business

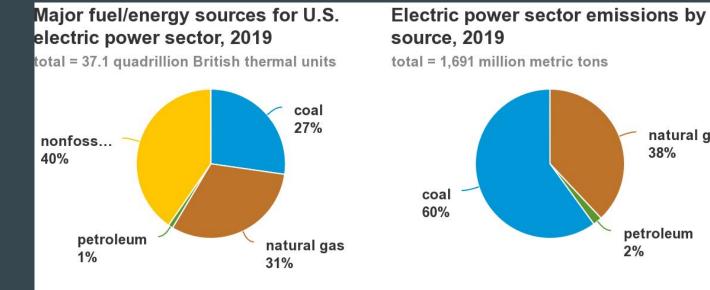
Kamal Mamdani

Sophomore Business major with a focus in real estate

Emmett Berger


Sophomore Psychology major in the Liberal Arts Honors Program

Yanni Vasilakis


Freshman Civil Engineering student in the Cockrell School of Engineering

INDEX

Quick Decrease in Oil Demand Would Ferry an International Recession

Coal is the dominant CO2 emissions source related to electricity generation

Note: nonfossil is nuclear and renewable energy.

Source: U.S. Energy Information Administration, Monthly Energy Review, Table 2.6 and 11.6, July 2020,

preliminary data

natural gas

38%

petroleum

2%

Inga 2 Dam Research

				Safeguard Policies Triggered	Yes	No	TBD		
				January 2007. Potential sensitive sites include caves in the vic	inity of the p	project area.			
Safeguard Policies Triggered	Yes	No	TBD	Indigenous Peoples (OP/BP 4.10)		X			
	V	110	100	Involuntary Resettlement (OP/BP 4.12)	X				
Environmental Assessment (OP/BP 4.01)	<u>^</u>	L		OP/BP 4.12 were triggered as civil works of the transmission					
The environmental impacts of the rehabilitation of the Inga 1				resettlement policy framework (RFP) was prepared and disclo					
moderate and manageable. Only a fraction of the water from t	he huge Cor	igo River is	diverted	Infoshop-01/18/2007. The adoption by SNEL and appropriate			d		
into Inga 1 and Inga 2 intake canal for hydropower production	and there is	s very little e	ffect on	resettlement plan for the Inga-Kinshasa transmission line is a	condition of	appraisal.			
the hydrological regime of the Congo River as a result of the I	Project. The	transmissio	n line from	Safety of Dams (OP/BP 4.37)	X				
Inga to the Kingatoko substation in Kinshasa passes mostly th				Consistent with OF 4.57, and according to Torks developed in					
forest area near the Inga hydropower station has been avoided				Built specialist, a review of dam safety at the linga site was eo					
				significant concerns were identified, but a strengthened progra					
	anageable environmental impacts. An Environmental and Social Impact Assessment, including								
	invironmental and Social Management Framework and Plan, were adopted by the Project and			as a covenant in the legal agreement for the Project; however, to-date no such Plan has been					
disclosed in December, 2006. A resettlement action plan (RAI				adopted. The consulting firm that had prepared a draft EPP in					
transmission from Inga to the Kingatoko substation in Kinsha	sa, the RAP	includes imp	pacts of	and complement the EPP by May 2011. A panel of experts or					
grid extension.				with five experts on geotechnical, electromechanical, dams, se					
Natural Habitats (OP/BP 4.04)	T	X		scheduled to initiate its mandate in April 2011.					
Forests (OP/BP 4.36)		X		Projects on International Waterways (OP/BP 7.50)	X				
Pest Management (OP 4.09)	X			OP7.50 applies to Projects that involve the use of international					
The project includes control of black flies, a vector for onchoo	araiacic in f	he project or	20	rehabilitation component (Component 1) will involve the use			ala.		
				international waterway that DRC shares with 8 countries and,					
through the use of the pesticide permethrine. A pest managem				However, the Inga dam is a "run of the river" plant, and the pr the dam, dredging and reprofiling of the intake canal) will not					
disclosed in March, 2007. It is expected that a services contract		D/APOC to s	support the	quality. On this basis, and as set out in paragraph 7(a) of OP7.					
black fly control program at Inga will be signed in April 2011	•			requirement to notify other riparian states about the Project, as					
Physical Cultural Resources (OP/BP 4.11)	Х			quality nor the quantity of the water flowing to other riparian					
A framework for managing cultural property was prepared and	d released to	the infosho	p in	adversely affected by the other riparians' possible water use.					

Positive Externalities of Inga 2 Rehabilitation

3. With its vast, untapped hydropower resources, DRC holds the key to the continent's energy solutions in the form of clean, renewable and affordable power. It thus has a critical regional role to play in Africa's energy future. The Congo River basin alone holds almost 30 per cent of Africa's total fresh surface water reserves and the world's largest hydropower potential in any one single river basin. The greatest source of hydroelectric potential is the Inga rapids on the Congo River. When considering the average potential hydropower output of 774 TWh per annum, the DRC stands third behind China and Russia. When expressed as firm power capacity, the Congo River potential is equivalent to 100,000 MW or 13 percent of global hydropower potential capacity of 45,000 MW.

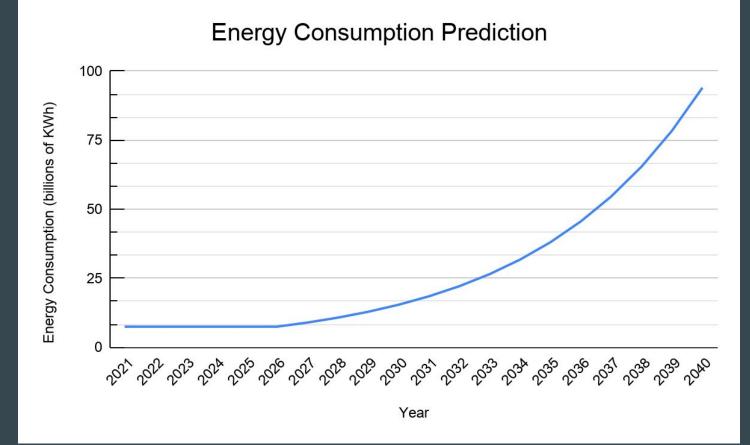
4. Hydropower plays both mitigation and adaptation roles in addressing climate change. Avoided GHG emission through hydropower can be significant, particularly in Africa and specifically in DRC where forest resources are used for fuel. Increasing the share of hydropower in the energy generation portfolio in DRC or the region, can reduce CO2 emissions significantly by displacing other high carbon generation. In the Africa Region, increasing the share of hydropower through regional trade could save 70 million tonnes per year of CO2 emissions. At today's carbon prices, viable hydropower share can potentially increase by 50 percent. Increased generation at Inga site through rehabilitation of Inga 1 and 2 (this project) and in the future through Inga 3 and Grand Inga, will not only have low lifecycle GHG emissions, but will contain the lion's share of the annual CO2 emissions reduction. Additionally, hydropower can help mitigate the local environmental problems associated with inefficient and polluting sources of energy (such as small diesel power generators) and add to the reliability and resiliency of power system within DRC and the regional power pools.

5. But the hydropower potential remains mostly untapped with serious access and development implications. Today, only a total installed power generating capacity of about 2,100 MW is in place in the Inga 1 and Inga 2 and other smaller hydropower stations, including those in the Katanga Province, of which less than half the capacity is operable. Lack of sufficient transmission and distribution capacity means that the vast majority of DRC's population and its economy are under-served. At about 6 percent, household access to electricity services is now less than the pre-war period level, and particularly low compared to the average of Sub-Saharan countries access rate of 31 percent, with two thirds of the total electrified households in Kinshasa alone. Power outages averaging more than three hours in length are experienced more than 180 days per year. As a result, firms are frequently forced to rely on expensive back-up generators. The economic cost of these outages can be conservatively estimated at 1.7 percent of GDP (AICD study, 2009).

Cost of putting in roads

Table A The unit costs of road construction and maintenance

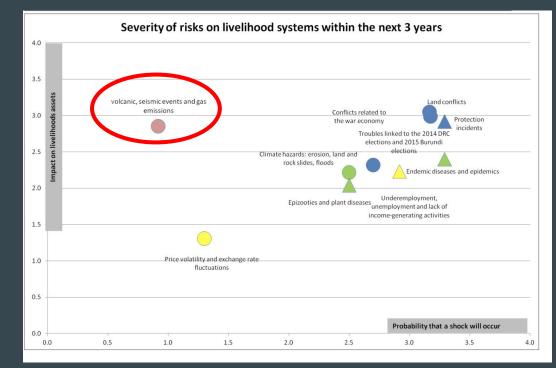
2006 US\$


Туре	Unit	Lower quartile	Median	Upper quartile
Construction (paved) <50km	US\$/lanekm	349,523	401,646	613,929
Construction (paved) >50km	US\$/lanekm	209,427	290,639	344,135
Rehabilitation (paved) <50km	US\$/lanekm	220,186	352,613	505,323
Rehabilitation (paved) >50km	US\$/lanekm	194,679	299,551	457,714
Periodic maintenance (Paved)	US\$/lanekm	81,854	158,009	235,157
Regraveling	US\$/lanekm	12,835	15,625	19,490

Inga 2 Rehabilitation Cost

14. The project was originally estimated at US\$499.1 million, of which IDA financing is US\$296.7 million. The remaining US\$202.4 is financed by EIB, AfDB, and counterparts (Government of DRC and the National Electric Utility, SNEL). Revised costs of the project are now estimated at US\$884.4 million, resulting in a financing gap of about US\$385 million. IDA proposes to increase its financing by US\$288 million, corresponding to the increase in the components originally financed by IDA. The remaining gap of US\$97 million is to be financed by AfDB, KfW and SNEL.

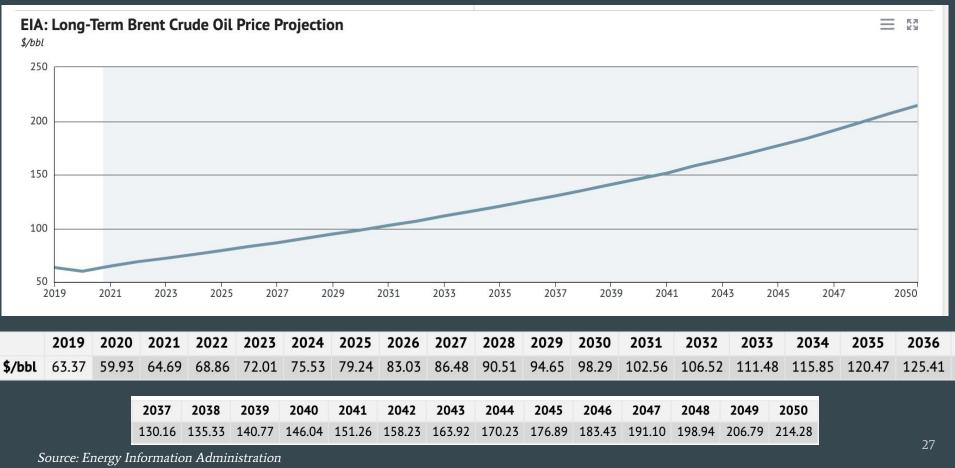
Source:		(\$ million)
DRC/SNEL		11
International Development Association (IDA)		288
African Development Bank (AfDB)		32
Kreditanstalt für Wiederaufbau (KfW)		54
	Total	385


IEA Energy Consumption Prediction for DR Congo

Energy Consumption Prediction Table for DRC

Year	Energy Consumption	Change per Year
2021	7.46	0
2022	7.46	0
2023	7.46	0
2024	7.46	0
2025	7.46	0
2026	7.46	0
2027	8.94	1.48
2028	10.71	1.77
2029	12.84	2.13
2030	15.39	2.55
2031	18.44	3.05
2032	22.10	3.66
2033	26.48	4.38
2034	31.73	5.25
2035	38.03	6.30
2036	45.57	7.54
2037	54.62	9.04
2038	65.45	10.84
2039	78.44	12.98
2040	94.00	15.56

Extracting the gas in Lake Kivu reduces gas emissions in East DRC, thus decreasing risk on livelihood


Source: Resilience Systems Analysis Eastern DRC; UNICEF, OECD

World Energy Demand Predictions

World primary energy demand by fuel type

		Lev mbo	Growth % p.a.		
	2015	2020	2030	2040	2015-2040
Oil	86.5	92.3	97.9	100.7	0.6
Coal	78.0	80.7	85.8	86.2	0.4
Gas	59.2	65.2	79.9	93.2	1.8
Nuclear	13.5	15.8	20.1	23.8	2.3
Hydro	6.8	7.5	9.0	10.3	1.7
Biomass	28.0	30.1	34.0	37.3	1.2
Other renewables	3.8	6.6	12.9	20.0	6.8
Total world	276.0	298.2	339.4	371.6	1.2

Oil Price Projections

Total Oil Investment and Profit Predictions

Private Company initial Investment						
Land oil rig cost	\$30,000,000.00	5	Oil rigs to be built			
Refinery cost	\$2,500,000,000	100,000	Barrels per day			
Total	\$2,650,000,000					

Oil Revenue Distribution 2021 - 2029						
Private Company	68.60%					
DRC	31.40%					

Oil Revenue Distribution 2030 - 2040						
Private Company	10.00%					
DRC	90.00%					

Year	Predicted Oil Price	Total Rigs	Barrels per Rig per Day	Barrels per Year	Barrels Kept in House	Total Revenue	ROI for Private Company	Total Profit for DRC
2021	\$64.69	0	0	0	0	\$0		\$0
2022	\$68.86	0	0	0	0	\$0 \$0	· · · ·	\$0 \$0
2023	\$72.01	0	0	0	0	\$0	· · · · ·	\$0
2024	\$75.53	0	0	0	0	\$0	· · · ·	\$0
2025	\$79.24	0	0	0	0	\$0	· · · ·	\$0
2026	\$83.03	0	0	0	0	\$0	\$0	\$0
2027	\$86.48	5	20,000	36,500,000	887,988	\$3,079,726,763	\$2,112,692,559	\$967,034,204
2028	\$90.51	5	20,000	36,500,000	1,952,144	\$3,126,926,434	\$2,145,071,534	\$981,854,900
2029	\$94.65	5	20,000	36,500,000	3,227,417	\$3,149,249,990	\$2,160,385,493	\$988,864,497
2030	\$98.29	5	20,000	36,500,000	4,755,690	\$3,120,148,225	\$312,014,823	\$2,808,133,403
2031	\$102.56	5	20,000	36,500,000	6,587,156	\$3,067,861,268	\$306,786,127	\$2,761,075,141
2032	\$106.52	5	20,000	36,500,000	8,781,965	\$2,952,525,053	\$295,252,505	\$2,657,272,548
2033	\$111.48	5	20,000	36,500,000	11,412,201	\$2,796,787,828	\$279,678,783	\$2,517,109,045
2034	\$115.85	5	20,000	36,500,000	14,564,247	\$2,541,256,964	\$254,125,696	\$2,287,131,268
2035	\$120.47	5	20,000	36,500,000	18,341,625	\$2,187,539,398	\$218,753,940	\$1,968,785,459
2036	\$125.41	5	20,000	36,500,000	22,868,395	\$1,709,539,636	\$170,953,964	\$1,538,585,673
2037	\$130.16	5	20,000	36,500,000	28,293,226	\$1,068,193,692	\$106,819,369	\$961,374,323
2038	\$135.33	5	20,000	36,500,000	34,794,286	\$230,834,312	\$23,083,431	\$207,750,881
2039	\$140.77	5	20,000	36,500,000	42,585,086	-\$856,597,495	-\$85,659,750	-\$770,937,746
2040	\$146.04	5	20,000	36,500,000	51,921,496	-\$2,252,155,298	-\$225,215,530	-\$2,026,939,768
			Totals	511,000,000	250,972,923	\$25,921,836,772	\$8,074,742,945	\$17,847,093,827